Географические карты как пример информационной модели

Принципы картографического моделирования. Информационные свойства карт

Географические карты, уменьшенные обобщённые изображения земной поверхности на плоскости, показывающие размещение, сочетания и связи природных и общественных явлений, отбираемых и характеризуемых в соответствии с назначением данной карты. Определение Географические карты только как чертежа земной поверхности недостаточно, так как Географические карты могут отображать самые разнообразные природные и социально-экономические явления. Географические карты способны передавать пространственные изменения этих явлений во времени. Для Географические карты свойственны: особый математический закон построения (картографические проекции), изображение явлений посредством особой знаковой системы — картографических символов (картографических знаков), отбор и обобщение изображаемых явлений (генерализация картографическая). Географические карты закономерно рассматривать как наглядные образно-знаковые модели. Им присущи основные черты моделей вообще: отвлечение от целого для исследования части — конкретной территории, конкретных явлений и процессов; упрощение, состоящее в отказе от учёта множества характеристик и связей и в сохранении некоторых, наиболее существенных; обобщение, имеющее в виду выделение общих признаков и свойств, и др. Картографический метод исследования — метод применения карт для научного и практического познания изображенных на них явлений. Картографический метод используют для исследования закономерностей пространственного размещения явлений, их взаимосвязей, зависимостей и развития. Многообразие приёмов анализа и обработки карт, свойственное Картографический метод, можно объединить в следующие основные способы: 1. Визуальный анализ, заключающийся в непосредственном зрительном исследовании по картам пространственного размещения, сочетаний, связей и динамики явлений. 2. Графические приёмы анализа, состоящие в построении по картам профилей и разрезов (дающих наглядное представление о вертикальной структуре явлений), блок-диаграмм (совмещающих перспективное изображение местности с её вертикальными разрезами), различного рода графиков и диаграмм (например, гипсографических кривых) и т. п. 3. Картометрические работы, заключающиеся в определении по картам координат, расстояний, длин, высот, площадей, объёмов, углов и др. количественных характеристик объектов, изображенных на карте (с оценкой точности получаемых результатов). 4. Математико-статистический анализ, применяемый: а) для исследования по картам любых однородных явлений (температур воздуха, плотности сельского населения, урожайности и т. п. ), их размещения и временных изменений, определяемых многими факторами с неизвестной функциональной зависимостью; б) для выяснения формы и тесноты связей между различными явлениями (посредством вычисления корреляционных зависимостей — коэффициентов корреляции, корреляционных отношений и т. д. ).

Математическое моделирование, имеющее целью создание пространственных математических моделей, т. е. математическое описание явлений (или процессов) по исходным данным, снятым с карты, и последующее исследование моделей для интерпретации и объяснения явлений; в частности, разработана методика составления аппроксимирующих уравнений поверхностей — реальных (например, рельефа земной поверхности) или абстрактных (например, годового слоя осадков). 6. Переработка (преобразование) карт для получения производных карт, специально предназначаемых и удобных для конкретного исследования (например, составление по гипсометрической карте производной карты крутизны склонов для изучения и прогнозирования процессов эрозии). Процесс «создание — использование карт» рассматривается как единая система картографического метода познания (Салищев).

В теоретической картографии доказано существование 2-х картографических образов — первый создается в представлении картографа и воплощается в карту, второй формируется у потребителя при работе с картой.

Отсюда следует существование 2 методов — картографического метода отображения действительности (создание карт) и картографического метода исследования действительности (использование карт). Задача первого метода — создание картографической модели, второго — ее апостериорное использование. Процесс «создание-использование карт» представляется как система с многочисленными прямыми и обратными связями.

Географические карты как пример информационной модели

Урок 15. Информационное моделирование как метод познания. Создание графических моделей

Презентация «Понятие как форма мышления»

Ключевые слова:
• объект-оригинал
• модель
• моделирование
• натурная модель
• информационная модель

Модели объектов и их назначение

Стремясь познать объекты окружающего мира, человек взаимо-действует с существующими объектами и создаёт новые объекты.

Одним из методов познания объектов окружающего мира является моделирование, состоящее в создании и исследовании «заместителей» реальных объектов. «Объект-заместитель» принято называть моделью, а исходный объект — прототипом или оригиналом.

Например, в разговоре мы замещаем реальные объекты их именами, оформители витрин используют манекен — модель человеческой фигуры, конструкторы строят модели самолётов и автомостроят модели самолетов и автомобилей, а архитекторы — макеты зданий, мостов и парков. Моделью является любое наглядное пособие, используемое на уроках в школе: глобус, муляж, карта, схема, таблица и т. п. (рис. 23).

Что общего у всех моделей? Какими свойствами они обладают?

Во-первых, модель не является точной копией объекта-оригинала: она отражает только часть его свойств, отношений и особенностей поведения. Например, на манекен можно надеть костюм, но с ним нельзя поговорить. Модель автомобиля может быть без мотора, а макет дома — без электропроводки и водопровода.

Во-вторых, поскольку любая модель всегда отражает только часть признаков оригинала, то можно создавать и использовать разные модели одного и того же объекта. Например: мяч может воспроизвести только одно свойство Земли — её форму; обычный глобус отражает, кроме того, расположение материков; а глобус, входящий в состав действующей модели Солнечной системы, — ещё и траекторию движения Земли вокруг Солнца.

Чем больше признаков объекта отражает модель, тем она полнее. Однако отразить в модели все свойства объекта-оригинала невозможно, а чаще всего и не нужно. Ведь при создании модели человек, как правило, преследует вполне определенную цель и стремится наиболее полно отразить только те признаки объектов, которые кажутся ему важными, существенными для реализации этой цели. Если, например, модель самолёта создается для коллекции, то в ней воспроизводится внешний вид самолета, а не его лётные характеристики.

От цели моделирования зависят требования к модели: какие именно признаки объекта-оригинала она должна отражать.

Отразить в модели признаки оригинала можно одним из двух способов.

Во-первых, признаки можно скопировать, воспроизвести. Такую модель называют натурной (материальной). Примерами натурных моделей являются муляжи и макеты — уменьшенные или увеличенные копии, воспроизводящие внешний вид объекта моделирования (глобус), его структуру (модель Солнечной системы) или поведение (радиоуправляемая модель автомобиля).

Во-вторых, признаки оригинала можно описать на одном из языков кодирования информации — дать словесное описание, привести формулу, схему или чертёж. Такую модель называют информационной.

Модели используются человеком для:
представления материальных предметов (макет застройки жилого района в мастерской архитектора);
объяснения известных фактов (макет скелета человека в кабинете биологии);
проверки гипотез и получения новых знаний об исследуемых объектах (модель полёта самолёта новой конструкции в аэродинамической трубе);
прогнозирования (сделанные из космоса фотоснимки движения воздушных масс);
управления (расписание движения поездов) и т. д.

Разнообразие информационных моделей

Объект-оригинал можно заменить набором его признаков.

Набор признаков, содержащий всю необходимую информацию об исследуемом объекте или процессе, называют информационной моделью.

В таблице 2 приведён пример информационной модели дачного дома — карточки из каталога, по которому заказчик строительной компании может выбрать подходящий проект. Каждая карточка в каталоге содержит величины и их значения, определяющие свойства дома.

Таблица 2

Все названия свойств в информационных моделях — это всегда знаковые элементы, потому что название может быть выражено только знаками. А вот значения величин могут нести как знаковую, так и образную информацию. Например, в таблице 2 значение величины «внешний вид» выражено образным элементом (рисунком), а значения остальных величин выражены с помощью знаков (цифр, букв).

Информационные модели представляют объекты и процессы в образной или знаковой форме. По способу представления различают следующие виды информационных моделей — рис. 24.

Образные информационные модели (рисунки, фотографии и др.) представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (например, на бумаге).

Читайте также  Горные хребты Европы

Много информации дают специалистам полученные со спутников фотографии поверхности Земли (рис. 25).

Широко используются образные информационные модели в образовании (иллюстрации в учебниках (рис. 26), учебные плакаты по различным предметам) и науках, где требуется классификация объектов по их внешним признакам (в ботанике, биологии, палеонтологии и др.).

Знаковая информационная модель может быть представлена в форме текста на естественном языке, формулы (например, площади прямоугольника S = а*b) или программы на специальном языке программирования и т. д.

В смешанных информационных моделях одновременно используются образные и знаковые элементы.

Примерами смешанных информационных моделей могут служить географические карты, графики, диаграммы и пр. На рисунке 27 приведён пример модели одноклеточной водоросли хламидомонады. Нарисованные части водоросли — образные элементы этой модели, а надписи снизу и справа от рисунка — знаковые элементы.

Плакат «Модели»

Вопросы и задания

1. Что такое модель? Каковы основные свойства моделей?

2. Что такое моделирование?

3. Как можно назвать отношение между объектом-оригиналом и его моделью?

4. Какие модели называют натурными? Приведите 2-3 примера натурных моделей.

5. Какие модели называют информационными? Приведите 2-3 примера информационных моделей.

6. Для каждой из перечисленных моделей назовите действия, которые человек может выполнить и с ней, и с объектом-оригиналом:
а) радиоуправляемая модель самолёта;
б) словесное описание куртки;
в) план квартиры;
г) чайник из пластилина в натуральную величину;
д) мысленное представление о будущей поездке.
Какие действия могут быть выполнены только с оригиналом?

6. В какой ситуации искусственные цветы и муляжи фруктов могут использоваться в качестве моделей-«заместителей» настоящих цветов и фруктов? Какие свойства и отношения объектов отражают эти модели, а какие — нет?

7. Назовите объекты, модели которых приведены на рис. 28-30.

Назовите образные и знаковые элементы каждой модели. Для каждой модели поясните, смысл каких знаков нужно знать, чтобы получить информацию с помощью этой модели.

Географические карты как пример информационной модели

Вы будете перенаправлены на Автор24

Рассмотрим в качестве примера информационных моделей географические карты. Их можно рассматривать как абстрагированные описания земной поверхности, построенные на основе комбинирования математических расчетов и эмпирических наблюдений.

Математические основы географии

Земля не обладает формой идеального шара, она немного сплюснута у полюсов и имеет обширные выпуклости и впадины. Сложную форму Земли называют геоидом. Точно определить его невозможно, но измерения со спутников дают о нем достаточное представление.

Наиболее близок к реальной форме Земли эллипсоид. Но даже вычислить размеры земного эллипсоида — непростая задача: разные методики дают неодинаковые результаты. В разных странах законодательно закреплены в качестве образцов формы Земли разные эллипсоиды:

  • в России принят эллипсоид Красовского;
  • в Северной и Центральной Америке — эллипсоид Кларка;
  • в странах Западной Европы и некоторых государствах Азии — эллипсоид Хейфорда;
  • в государствах Южной Азии, Индии, Пакистане, Шри-Ланке, Непале эллипсоид Эвереста.

Помощь со студенческой работой на тему
Географические карты как пример информационной модели

Карты, составленные на основе различных эллипсоидов, различаются, хотя на средне- и мелкомасштабных картах такие различия не очень ощутимы. Для их составления вместо эллипсоида иногда даже используется шар, а вместо полуосей — средний радиус Земли. В России его длина принята равной 6 371 032 м.

Картографические проекции

Самая очевидная модель Земли — глобус, но на нем сложно измерить расстояние. Его также трудно тиражировать. Еще один недостаток — глобус, изготовленный в крупном масштабе, будет слишком громоздким. Поэтому издревле предпочтительным средством отображения земной поверхности являются географические карты.

Первые глобусы, появившиеся в эпоху великих географических открытий, были изготовлены из страусиных яиц.

Рисунок 1. Глобус, изготовленный из страусиного яйца. Автор24 — интернет-биржа студенческих работ

Географическая карта — проекция поверхности планеты на плоскость. Сферу невозможно развернуть на плоскости без искажений, но можно попытаться сделать это, сводя искажения к минимуму, соблюдая принцип, согласно которому каждой точке на земной поверхности соответствовала бы только одна точка на плоскости. В любом случае некие искажения неизбежны, и если, например, на крупномасштабных картах отдельных областей России они минимальны, то на мелкомасштабных могут быть существенными.

Картографические проекции при преобразовании трехмерной поверхности в двухмерную сжимают изображение или растягивают его. В зависимости от характера и величины искажений различают несколько классов картографических проекций:

  • равноугольные проекции сохраняют углы и формы небольших объектов без искажений, зато в них резко деформируются длины и площади, например, Гренландия выглядит более чем в 10 раз больше, чем остров Мадагаскар, хотя в действительности их площади различаются всего в четыре раза;
  • равновеликие проекции сохраняют площади неизменными, но углы и формы сильно искажают; такие карты удобны для определения площадей;
  • на произвольных проекциях обнаруживаются самые разнообразные искажения длин, площадей, углов, но они распределяются по карте оптимальным, компромиссным образом; например, минимальные искажения размещаются в центральной части карты, а все сжатия и растяжения помещаются ближе к краям.

Рисунок 2. Искажения проекции Меркатора при изображении России. Автор24 — интернет-биржа студенческих работ

Проекции классифицируют и по виду вспомогательной поверхности, используемой для перехода от эллипсоида или шара к плоскости. Наиболее распространены проекции:

  • цилиндрические (сфера проектируется на цилиндр);
  • конические (вспомогательной поверхностью служит конус);
  • азимутальные (от араб. «ас-сумут» — «пути»).

Для изображения России удобна коническая проекция, когда воображаемый конус пересекает земную сферу по 47 и 62° северной широты. Это так называемые линии нулевых искажений, вблизи которых сжатия и растяжения невелики. Между этими воображаемыми линиями находятся самые густонаселённые области.

При выборе проекций нужно учитывать не только форму и размеры отображаемой территории, и ее расположение на Земле, но и назначение карты.

Координаты на картах

Географические широта и долгота — угловые величины, определяющие положение точки относительно экватора и начального меридиана.

Отсчет широты ведется от экватора к полюсам: от 0° до 90°. В зависимости от направления указывают «северной широты» или «южной широты» («с.ш.» или «ю.ш.»). В качестве нулевого принят меридиан, проходящий через старейшую астрономическую обсерваторию в Гринвиче (Великобритания). Гринвичский меридиан был признан за точку отсчета по специальному международному соглашению 1884 г.

До сих пор на картах некоторых стран встречаются принятые на национальном уровне «начальные меридианы»: в Испании, например, отсчет долготы ведется от Мадрида, во Франции — от Парижа, в Италии — от Рима, в Дании — от Копенгагена и т. д. В России нулевым долгое время считался Пулковский меридиан, проходящий через главную астрономическую обсерваторию страны (основана в 1839 г.) на южной окраине Санкт-Петербурга.

Широты и долготы определяются в ходе астрономических и геодезических наблюдений. На географических картах они отображаются в виде линий — параллелей и меридианов.

На топографических картах применяется также система прямоугольных координат. Земную поверхность мысленно разбивают на геодезические зоны шириной по 6 градусов — области, замкнутые между ближайшими друг к другу меридианами, значение которых кратно 6 или равно 0. Такая зона похожа на лепесток, наиболее широкий на экваторе и сходящий на нет к полюсам).

Рисунок 3. Система прямоугольных координат. Автор24 — интернет-биржа студенческих работ

Современные электронные картографические сервисы, такие, как Google Maps, Яндекс.Карты, унаследовали и расширили теоретическое наследие географов прошлого. Применяя традиционные проекции, они дополнительно оснащают свои продукты такими возможностями, как учет рельефа местности (можно замерить перепад высот), прокладки маршрутов, переключение между проекциями и режимами (схема — спутниковые снимки).

§ 9. Информационное моделирование

Ключевые слова:

  • объект-оригинал
  • модель
  • моделирование
  • натурная модель
  • информационная модель
Читайте также  География промышленности Поволжского экономического района

Модели объектов и их назначение

Стремясь познать объекты окружающего мира, человек взаимодействует с существующими объектами и создаёт новые объекты.

Одним из методов познания объектов окружающего мира является моделирование, состоящее в создании и исследовании «заместителей» реальных объектов. «Объект-заместитель» принято называть моделью, а исходный объект — прототипом или оригиналом.

Например, в разговоре мы замещаем реальные объекты их именами, оформители витрин используют манекен — модель человеческой фигуры, конструкторы строят модели самолётов и автомобилей, а архитекторы — макеты зданий, мостов и парков. Моделью является любое наглядное пособие, используемое на уроках в школе: глобус, муляж, карта, схема, таблица и т. п. (рис. 23).

Что общего у всех моделей? Какими свойствами они обладают? Во-первых, модель не является точной копией объекта-оригинала: она отражает только часть его свойств, отношений и особенностей поведения. Например, на манекен можно надеть костюм, но с ним нельзя поговорить. Модель автомобиля может быть без мотора, а макет дома — без электропроводки и водопровода.

Во-вторых, поскольку любая модель всегда отражает только часть признаков оригинала, то можно создавать и использовать разные модели одного и того же объекта. Например: мяч может воспроизвести только одно свойство Земли — её форму; обычный глобус отражает, кроме того, расположение материков; а глобус, входящий в состав действующей модели Солнечной системы, — ещё и траекторию движения Земли вокруг Солнца.

Чем больше признаков объекта отражает модель, тем она полнее. Однако отразить в модели все свойства объекта-оригинала невозможно, а чаще всего и не нужно. Ведь при создании модели человек, как правило, преследует вполне определенную цель и стремится наиболее полно отразить только те признаки объектов, которые кажутся ему важными, существенными для реализации этой цели. Если, например, модель самолёта создается для коллекции, то в ней воспроизводится внешний вид самолета, а не его лётные характеристики.

От цели моделирования зависят требования к модели: какие именно признаки объекта-оригинала она должна отражать.

Отразить в модели признаки оригинала можно одним из двух способов.

Во-первых, признаки можно скопировать, воспроизвести. Такую модель называют натурной (материальной). Примерами натурных моделей являются муляжи и макеты — уменьшенные или увеличенные копии, воспроизводящие внешний вид объекта моделирования (глобус), его структуру (модель Солнечной системы) или поведение (радиоуправляемая модель автомобиля).

Во-вторых, признаки оригинала можно описать на одном из языков кодирования информации — дать словесное описание, привести формулу, схему или чертёж. Такую модель называют информационной.

Модели используются человеком для:

  • представления материальных предметов (макет застройки жилого района в мастерской архитектора);
  • объяснения известных фактов (макет скелета человека в кабинете биологии);
  • проверки гипотез и получения новых знаний об исследуемых объектах (модель полёта самолёта новой конструкции в аэродинамической трубе);
  • прогнозирования (сделанные из космоса фотоснимки движения воздушных масс);
  • управления (расписание движения поездов) и т. д.

Разнообразие информационных моделей

Объект-оригинал можно заменить набором его признаков.

Набор признаков, содержащий всю необходимую информацию об исследуемом объекте или процессе, называют информационной моделью.

В таблице 2 приведён пример информационной модели дачного дома — карточки из каталога, по которому заказчик строительной компании может выбрать подходящий проект. Каждая карточка в каталоге содержит величины и их значения, определяющие свойства дома.

Все названия свойств в информационных моделях — это всегда знаковые элементы, потому что название может быть выражено только знаками. А вот значения величин могут нести как знаковую, так и образную информацию. Например, в таблице 2 значение величины «внешний вид» выражено образным элементом (рисунком), а значения остальных величин выражены с помощью знаков (цифр, букв).

Информационные модели представляют объекты и процессы в образной или знаковой форме. По способу представления различают следующие виды информационных моделей — рис. 24.

Образные информационные модели (рисунки, фотографии и др.) представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (например, на бумаге).

Много информации дают специалистам полученные со спутников фотографии поверхности Земли (рис. 25).

Рис. 25. Полученная со спутника фотография

Широко используются образные информационные модели в образовании (иллюстрации в учебниках (рис. 26), учебные плакаты по различным предметам) и науках, где требуется классификация объектов по их внешним признакам (в ботанике, биологии, палеонтологии и др.).

Рис. 26. Построение римского легиона в три линии

Знаковая информационная модель может быть представлена в форме текста на естественном языке, формулы (например, площади прямоугольника S = A x B) или программы на специальном языке программирования и т. д.

В смешанных информационных моделях одновременно используются образные и знаковые элементы.

Примерами смешанных информационных моделей могут служить географические карты, графики, диаграммы и пр. На рисунке 27 приведён пример модели одноклеточной водоросли хламидомонады. Нарисованные части водоросли — образные элементы этой модели, а надписи снизу и справа от рисунка — знаковые элементы.

Геоинформационные модели

Презентация может применяться на уроках при изучении темы «Геоинформационные системы» (учебник И.Г.Семакина, Е.К.Хеннер 10-11 классы).

В презентации подробно рассматривается структура, организация работы геоинформационных систем (ГИС) как моделей.
Дается определение геоинформатики:

Геоинформатика – наука, технология и производственная деятельность по аучному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем, по разработке геоинформационных технологий, по приложению ГИС для практических
и научных целей.
Далее дается определение Геоинформационной системы, рассматривается структура ГИС, типичный набор функций ГИС, подробно разбирается работа ГИС, классы решаемых задач, примеры запросов, перечисляются сферы применения ГИС, в качестве примеров( кроме известных систем) даются ссылки на французскую и украинскую ГИС.

Просмотр содержимого документа
«Геоинформационные модели »

  • Геоинформатика – наука, технология и производственная деятельность по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем, по разработке геоинформационных технологий, по приложению ГИС для практических и научных целей.

Геоинформационная система (ГИС)-

это информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и анализ пространственных (пространственно-координированных) данных.

Структура ГИС

Данные (пространственные данные):

  • позиционные (географические): местоположение объекта на земной поверхности, его координаты в выбранной системе координат;
  • непозиционные (атрибутивные, или метаданные) — описательные текстовые, электронные документы, данные графического типа, включая фотографии объектов, трехмерные изображения объектов, видеоматериалы и т.д.

  • Аппаратное обеспечение (ЭВМ, компьютерные сети, накопители, сканеры, дигитайзеры и т. д.);

  • Программное обеспечение (ОС, приложение и надстройки к нему);

  • Технологии (методы, порядок действий и т. д.);

  • Операторы, администраторы, пользователи

Типичный набор функций ГИС

  • ввод данных в машинную среду (data input) путем их импорта из существующих наборов цифровых данных или с помощью оцифровывания источников;
  • преобразование или трансформация данных (data transformation), включая конвертирование данных из одного формата в другой, трансформацию картографических проекций, изменение систем координат;
  • хранение, манипулирование и управление данными во внутренних и внешних базах данных;
  • картометрические операции (см. картометрия), включая вычисление расстояний между объектами в проекции карты или на эллипсоиде, длин кривых линий, периметров и площадей полигональных объектов;

  • операции обработки данных геодезических измерений (COGO);
  • операции оверлея (наложение);
  • операции «картографической алгебры» (map algebra) для логико-арифметической обработки растрового слоя как единого целого;
  • пространственный анализ (spatial analysis) — группа функций, обеспечивающих анализ размещения связей и иных пространственных отношений объектов, включая анализ зон видимости/невидимости, анализ соседства (см. анализ близости), анализ сетей, создание и обработку цифровых моделей рельефа, анализ объектов в пределах буферных зон и др.;

  • пространственное моделирование или геомоделирование (spatial modeling, geo-modeling), включая операции, аналогичные используемым в математико-картографическом моделировании и картографическом методе исследования;
  • визуализация исходных, производных или итоговых данных и результатов обработки, включая картографическую визуализацию, проектирование и создание (генерацию) картографических и иных пространственных изображений, включая трехмерные;
  • вывод данных (data output) — графической, табличной и текстовой документации, в том числе ее тиражирование, документирование, или генерацию отчетов (reporting);
  • обслуживание процесса принятия решений (decision making)
Читайте также  Горные хребты Анд

Дополнительный набор функций

  • цифровая обработка изображений (данных дистанционного зондирования);
  • средства экспертных систем;
  • средства настройки на требования пользователя (customization);
  • средства расширения функциональных возможностей ГИС:
  • встроенные макроязыки (макросы); инструментарии разработчика (developer’s toolkit).
  • встроенные макроязыки (макросы);
  • инструментарии разработчика (developer’s toolkit).

Как работает ГИС?

  • Каждому пространственному объекту соответствует запись в базе данных с набором атрибутивной информации
  • ГИС хранит информацию в виде набора тематических слоев, которые объединены на основе географического положения

Примеры слоев

  • Населенные пункты
  • Автомобильные дороги
  • Железные дороги
  • Гидротехнические сооружения (шлюзы, каналы, насосные станции, дамбы)
  • Мосты
  • ЛЭП
  • Газопроводы
  • Заповедные территории (местного, национального и международного значения)
  • Сельхоз угодья (пашни, сады, виноградники, пастбища, рисовые чеки)
  • Земли водного, лесного, природоохранного и с/х назначения
  • Растительный покров (плавни, леса)
  • Административное деление, государственная граница
  • Водотоки (реки, протоки, малые реки)
  • Водоемы (озера, рыбпруды и т.д.)
  • Рельеф

Векторная и растровая модели данных

  • В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y (в современных ГИС часто добавляется третья пространственная и четвертая, например, временная координата). Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств (например, плотность населения).

  • Растровая модель оптимальна для работы с непрерывными свойствами (описывает непрерывные объекты и явления). Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке.

Классы решаемых задач

  • Информационно-справочные задачи
  • Сетевые задачи

(Анализ географических сетей: улиц, рек, дорог, трубопроводов, линий электропередачи или связи и др.)

  • Пространственный анализ и моделирование

Примеры запросов, на которые может ответить ГИС

  • Получение информации по местоположению
  • Определение местоположения по информации
  • Временной анализ изменений объектов на территории
  • Показать пространственные соотношения и взаимосвязи между объектами на заданной территории
  • Что, если …?(анализ “what if”)

Сферы применения ГИС

  • Кадастр
  • Оперативные службы (МВД, МЧС..)
  • Нефть и газ
  • Транспорт
  • Экология
  • Лесное хозяйство
  • Водные ресурсы
  • Недропользование
  • Сельское хозяйство
  • Геодезия, картография, география
  • Телекоммуникации
  • Инженерные коммуникации
  • Бизнес
  • Торговля и услуги

  • http://www.geoportal.fr/
  • http://gki.com.ua

Графические информационные модели. Многообразие графических информационных моделей

Урок 5. Информатика 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.

Получите невероятные возможности

Конспект урока «Графические информационные модели. Многообразие графических информационных моделей»

Графическая информационная модель – это наглядный способ представления объектов и процессов в виде графических изображений. Графические информационные модели являются простейшим видом моделей. С их помощью передаются внешние признаки объекта – размер, форма, цвет. Графические модели несут в себе больше информации, чем словесные.

Для более наглядного и понятного представления информации в графических информационных моделях используются графические изображения (образные элементы), которые могут быть дополнены текстами, числами и символами. Примерами графических информационных моделей являются схемы, карты, чертежи, графики, диаграммы и много другое.

Разберёмся более подробно с каждой из них.

Cхема – это графическое отображение состава и структуры сложной системы. Можно обратиться к ранее рассматриваемому примеру: две электрические схемы соединения переключателей.

Схема последовательного соединения переключателей

Схема параллельного соединения переключателей

На первой представлено последовательное соединение, а на второй – параллельное. Можно заметить, что с помощью схемы легче разбираться с такими задачами, нежели использовать словесное описание. Схемы используются на уроках биологии, истории и так далее.

Следующая графическая информационная модель – чертеж. Чертеж – это условное графическое изображение предмета с точным соотношением его размеров, получаемое методом моделирования. При построении чертежа используются изображения, числа, текст. С помощью изображений мы получаем представление о форме объекта, с помощью чисел – о размере, с помощью текста – о названии объектов, размерах, в которых выполнены изображения. Примером чертежа является изображение детали перед её изготовлением.

На чертеже изображена деталь в разрезе, чтобы лучше было видно все части, составляющие нашу деталь, присутствуют размеры (числа).

Рассмотрим такую графическую информационную модель как карта. Карта используется для отображения местности в уменьшенном масштабе, которая является для нее объектом моделирования. Например, с помощью карты мы можем узнать сколько километров от Москвы до Санкт-Петербурга, как добраться на метро или автобусе с одного остановочного пункта до другого, где находится Будапешт и много другое. Для различных целей используются разнообразные карты: политическая, географическая, тематическая и другие.

Перейдем к графикам. График – это графическое изображение, которое отображает зависимость одной величины от другой, динамику какого-либо процесса в течение какого-либо периода и много другое.

Например, Максим учится в девятом классе. В течение 8 лет учёбы в школе он получал следующие годовые оценки по математике: первый класс – 5, второй класс – 4, третий класс – 4, четвёртый – 5, пятый – 4, шестой – 3, седьмой – 4, восьмой — 3. Посмотрим, как это можно отобразить на графике. Ось X будет отображать классы с 1 по 8. Ось Y оценки с 1 до 5. Обратите внимание, что в данном графике за единицу будем брать две клеточки.

Расставим точки в соответствии с данными на координатной плоскости и соединим их линиями.

Мы получили необходимый график, с помощью которого можно сделать вывод, что знания Максима по математике ухудшились. Ещё одним примером графика является кардиограмма сердца. Кардиограмма точно определяет в каком ритме бьётся сердце.

Перейдём к диаграммам. Диаграмма – это графическое изображение, которое даёт наглядное представление о соотношении каких-либо величин или нескольких значений одной величины, об изменении их значений. Диаграммы бывают нескольких видов, но более подробно мы с ними познакомимся при изучении электронных таблиц.

А сейчас рассмотрим несколько примеров.

Первый: Наша планета состоит из воды и суши. Вода составляет семьдесят процентов от планеты, а суша – тридцать. Изобразим всё это с помощью круговой диаграммы. Нарисуем круг. Он будет изображать планету и соответственно будет равен ста процентам. Затем изобразим семьдесят процентов суши и тридцать процентов воды.

На данной диаграмме мы можем увидеть соотношение воды и суши.

Теперь рассмотрим ещё один пример. Саша тратит на дорогу от дома до школы 10 минут, Таня – 15 минут, Ира – 7 минут и Игорь – 20 минут. Давайте все это изобразим с помощью диаграммы. На оси X напишем имена учащихся, а на оси Y – время, затраченное на дорогу. Затем каждому учащемуся нарисуем столбик по высоте соответствующий времени его пути.

Таким образом мы получили столбчатую диаграмму.

Важно запомнить:

· Графическая информационная модель – это наглядный способ представления объектов и процессов в виде графических изображений.

· Схема – это графическое отображение состава и структуры сложной системы.

· Чертёж – это условное графическое изображение предмета с точным соотношением его размеров, получаемое методом моделирования.

· График – это графическое изображение, которое отображает зависимость одной величины от другой, динамику какого-либо процесса в течение какого-либо периода и много другое.

· Диаграмма – это графическое изображение, которое дает наглядное представление о соотношении каких-либо величин или нескольких значений одной величины, об изменении их значений.